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I. Introduction. During the contract period substantial progress was made

on three basic problem areas:

(1) The partial basis problem.

(2) Least squares approximation with restricted range.

(3) Mixed norm approximation.
- In sections II, III, IV, we will discuss some of our work in each of
these areas. In section V some other results are discussed. |

II. The Partial Basis Problem. This problem was formulated by us in 1975

as a generalization of a problem of placing antenna elements optimally
in a line array; independently, G. G. Lorentz studied a special case [11].
The problem has received coﬁsiderable attention from researchers in recent
ye =s and elegant results have been obtained by us and others. This
should prove to be a fruitful area for further investigation.
The partial basis problem can be stated in its general form as
follows. lLet X be a normed linear space, let £, ho'.'.'hN-l belong

to X and let n be an integer, 1 < n < N . For every sequence
n

U= {uk} of integers, with 0 <y <ese< u < N-1 , consider
k=1 -1 n =

Il

n
e()) = min N £= )

2. h
cl,"',cn k=1 x uk

The problem is to minimize e(u); it is of particular interest when X
is one of the standard function spaces. The main results of [7] gives
Y " L [ XX ]
sufficient conditions for the "tail hu-n' 'hN-l'
best partial basis of size n . 'Typical theorems are:

to be the unigque
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Theorem 1. Let 0 < a <b <® and let N,n be integers with 1< n <N.

Let f be a real function, continuous in ({a,b] and assume that, for

xk-N (k) exists and is > 0 in (a,b), with strict

k=0, 1,***,n, ( f)
inequality there for k= n-1 and k=n . Let 0 < W <eoe< R < N-1

be integers such that {“1""'“n} # {N-n,*e*,N-1} . Let 1 <p <™,

Then /.'A‘qof
N-1 k
mn || £e0 - ] cx |l <
ckreal k=N-n L (a/b
n
min || £(x) - } ckxuk | - .
c, real k=1 L (a,b)

k

’ l -
. < Cooel & -
Theorem 2. Let O L0y S %o a and let 1 <n<N, n

0 2
(2k+1)

an integer. Let £ be a real function with f (0) = 0,

¥ =0,+°+,N~1, and f(zk)

PARE . .
Assume f( 1)(x) is continuous from the right at 0 . Let

(x) >0 on (0,m} for k = 0,1,e+¢ ,N .

0< Wy <tee<u < N-1 be integers such that {ul,--',un} # {N-n,ees,N-1}.

Let 1 <p <> . Then

N-1
min || £(x) - J] ¢ cos ax || <
ckreal k=N-n * ak LP(O,W)
| n
min || £(x) - J c,_cosa X || .
c, real k=1 K W Po,m

The theory of Tchebycheff systems is important for partial basis results

and [7] contains contributions to this theory. A typical theorem:

et nin
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Theorem 3. Let 0 < ao Kool an « Then

. . n n
cos a x , sin agX » = cos 0,X, = sin a,x,**°, (~1) " cos anx,(-l) sin ax

is an extended complete Tchebycheff system on [0, ¥} if and only if
<
an 172 ,
Elegant results have been obtained by Lewis, Pinkus, and Shisha [9]

giving sufficient conditions for the "head" ho,°°',h to be the unique

n-1

best partial basis of size n . Perhaps the most striking result is this:

Theorem 4, Let 0 <a<b<wo®, 1 £n<N, f continuous and positive

(k)

on [a, b] , (-1)k f (x) >0 for a<x<b, k=1,°**, n and

1<p<®®, Then for s =1,,,., ntl any subsequence of length s of
£f,1,x,°°°, xN'-1 is a Tchebycheff system on [a, b] and

n=-1 n
min ||£(x) - } ckxkll 4 < min ||f(x) - } ckxuk|| o
ckreal k= Lp(a, b) ckreal k=1 L {(a, b)

whenever 0O i-ul <ol un < N-1 and {ul,"',un} # {o, 1,"','n-1} .

The classical completely monotonic functions satisfy the hypotheses

of Theorem 4 and hence are best approximated by l,x,'",xn'.1 . Examples

are f(x) =e X , ¢>0, ([a, b€ (0, ©») and f£f(x) = x-M , M= positive

integer, l[a, b) € (0, ) .

The problem of finding the best partial basis computationally, for
situationskwhere theorems of the above type are inapplicable, was stucied
in [1]. An algorithm was presented, generalizing an algorithm of Hocking
and Leslie [12], and a comp:ter program was written and tested on some
numerical examples. Also a theorem givin continuous dependence of a best

approximation on the basis functions was < iven in [l1]., This algorithm
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was extended to complex-valued basis functions and used to design finite
impulse response digital filters and to estimate frequencies of sinusoids

in the presence of noise; cf. [4]).

III. Least Squares Approximation with Restricted Range, This problem can

be formulated as follow:

b 2
minimize I [E(x) - h(x)] dx

hed a

subject to £(x) < p(x) < u(x) for all x in a set I . This includes
the problem of positive approximation (where p(x) > 0 is required) which
has been studied by several investigators ([13], [14]). ‘

The following characterization theorem has been obtained (under certain

hypotheses on H, £, &, u, and I  which will not be specified here):

The approxi ation h* in H is a solution of the least squares restricted
range problem if and only if £ <h*<u on I and there exists points
xl,-",xk in1 and constants 01,'°-, °k such that:

(1) For i =1,%**,k, either h*(xi) = l(xi)

or h*(xi) = u(x.)

(ii) sign G1 = +1 if h*(xi) = u(xi)
-1 if h*(xi) = l(xi)
b k g
(iii) I (f-h*)hj - izl Ui hj (ti) ¢ j = l’occ' n .
a
{Here hl,-",hn is a basis for the set of approximations) .

s e i A Bl e < -l NG e o



Computational algorithms of the Remes type have been formulated, convergence

proofs obtained, and numerical examples solved in [6], [8].

. Mixed Norm Approximation. In designing beam patterns for antenna

arrays and in designing the frequency response of a digital filter, one

may wish to use different criteria of approximation for different intervals.
For example, one might use a uniform norm

max |£(x) - p(x) ]

X in I1
in the passband interval I1 and a weighted least squares norm
2 1/2
{ J w(x)If(x)—p(x)l dx] /
I2

in the stopband interval 12 . Two possible approaches are:

2
(i) minimize f w(x) | £(x)-p(x) |
X

P 2
subject to - € < f(x)-p(x) < e for all x in I1 H
and
(ii) minimize { A max lf(x)-p(x)|2

xin I

+ (1-1) I w(x)lf(x)-p(x)|2dx}

I

where 0 < A <1 . The "mixed norm" problem (ii) can be

converted to a quadratic programming problem, and solved; cf [2]. It

is shown in [2) that, “or £(x) of a certain type, (i) and (ii) are
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equivalent in the following sense: If pA(x) solves the problem (ii) for
some A, 0 <A <1, then there exists an € > 0 such that pA(x) solves

problem (i). Conversely, if pe(x) solves (i) for some € , there

exists A , 0 < A <1 such that pe(X) solves (ii). It is also shown
that mixed norm approximation is related to vectarial approximation, de-
veloped by A. Bacopoulos and others [15]. In [6] the "mixed norm" in (ii)

above is generalized to Arllf-plllr + (l-).)r Ilf-pllzr where 1 <r and

|| AI{l, [ ||2 are two specified norms. Again an equivalence theorem

is obtained. The "r = «" case, formulated as max {kllf-p||l, (l-A)||f-p||2} '
! is studied carefully in (3] for ||f-p|l1 a discrete uniform norm and

[(f—p[[z a least square norm: a computational algorithm is formulated,

proved to converge, and tested numerically. This algorithm is an analogue

of an algorithm of C. L. Lawson, cf, [16],

V. Other Results, In this section we discuss other work partially supported

by the Grant, namely {10] and (5]. Let - < a<0<b<e®®, and £ a

1
i real function, continuous on [a, b] but not a polynomial there. Given
?
) integers k, n

»

? denote
)

(1) E(f) = min nax If(x)-pn(x)|
a<x<b

where the minimum is taken over polynomials of degree at most n , Let

E;‘(f) denote the right hand side of (1) where the minimum is taken over all

polynomials of degree at most n whose coefficient of xk is o0, It

(k)

i ' follows from work in [17]), [18] that if f exists and satisfies a

Lipschitz condition of order a (0<a<l) throughout [a, b] and if




f(k)(o) # 0 then there exists a positive constant An such that

En(k)(f)
(2) Er';(—f—)-——— Z_Akn , Nn=0,1, s,

In [10] a converse theorem has been obtained which essentially states
(k)

-

that if inequality (2) holls, then f exists and satisfies a Lipschitz

condition of order O on each closed interval [a', b'] with

a<a' <b' <b ., Hence a remarkable theorem is obtained identifying a

, E " (£)
certain smoothness of f with the growth of —m— .,

En(f)

Note that this theorem could be considered a "partial basis" result of

type described in Section II.

{ In conclusion we mention briefly [5] where Muntz~type closure

Lt theorems are obtained for sequences of the form

-]
{w(t)tak} on unhounded intervals.
! k=1
}
>
‘
|
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